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aDepartment of Electrical and Computer Engineering, Swanson School of Engineering, University of
Pittsburgh, Pittsburgh, PA, USA

bDepartment of Communication Science and Disorders, School of Health and Rehabilitation Sciences,
University of Pittsburgh, Pittsburgh, PA, USA

Abstract

Cervical auscultation (CA) is an emerging method of assessing swallowing disorders that

is both non-invasive and inexpensive. This technique utilizes microphones to detect acoustic

sounds produced by swallowing activity and characterize its behavior. Though some prop-

erties of swallowing sounds are known, there is still a need for a complete understanding of

the baseline characteristics of cervical auscultation signals as well as how they change due to

the patient’s head motion, age, and sex. In order to examine these parameters, data was col-

lected from 56 healthy adult participants that performed six different head movement tasks

without swallowing. After preprocessing the signal, features were extracted. Dependent vari-

ables were time domain, frequency domain and time-frequency domain features. Statistical

tests showed that only the skewness and peak frequency were not statistically different for

all tasks. The peak frequency results indicate that head movement does not significantly

affect the microphone signal, and that it is unnecessary to filter out the lowest frequency

components. No sex differences were observed on the extracted features, but several features

exhibited age dependence.
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Preprint submitted to Elsevier October 10, 2013



1. Introduction

Swallowing difficulties, or dysphagia can occur for many reasons [1]. Almost half of

stroke patients suffer from dysphagia [2]. In stroke, dysphagia can impair one or more of the

oral, pharyngeal, or esophageal contributions to the transfer of a swallowed bolus of food or

liquid into the digestive system. Given that the upper aerodigestive tract is a single tube

that is shared by the digestive system and the respiratory system, the numerous events that

occur during this alternating access to the mechanism must be precisely executed to pre-

vent swallowed material from entering the airway. Sensorimotor events that occur during a

single swallow include oral and pharyngeal activities that systematically transfer intrabolus

pressure from the mouth to the esophagus: oral propulsion of the bolus into the pharynx

while preventing its leakage into the nasal cavity, and transfer of the bolus from the mouth,

through the pharynx into the esophagus while ensuring that the airway is closed and the

upper esophageal sphincter is adequately opened. Since the duration of a pharyngeal swallow

is very brief (about one second) and several biomechanical events occur during this duration,

the mistiming of the sequenced components of a swallow, or other sensorimotor impairments

affecting swallowing can produce adverse events such as misdirection of a swallowed bolus

into the airway leading to aspiration, in which food and fluids enter the trachea and into up-

per airways and lungs. Aspiration is a serious immediate consequence of dysphagia in many

stroke patients and contributes significantly to the morbidity and mortality of these patients

by producing pneumonia, airway obstruction, and other chronic pulmonary consequences [3].

Likewise, dysphagia after stroke is responsible for important adverse clinical outcomes such

as malnutrition, dehydration, and impaired quality of life [4, 5]. In fact patients with new

onset of stroke who develop pneumonia after onset, have a three-fold increased relative risk of

death compared to those that do not develop pneumonia after stroke onset [6]. Hence, early

diagnosis of dysphagia is very important for patient safety and health [7]. One current gold

standard for diagnosis is the videofluoroscopic swallowing study (VFSS), which is an imaging

technique that uses X-rays for recording biomechanical events that occur during swallowing,

and visualize the path of swallowed foods and fluids [8, 9]. However, VFSS instrumentation
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is not always available for immediate access when needed by patients residing in settings

in which it is not available, and in the absence of gold-standard instrumentation, reason-

ably sensitive screening methods are needed to identify patients with elevated likelihoods of

aspiration.

Cervical auscultation (CA) is a screening method that has received much attention in

the past two decades [10]. CA uses sensors attached to the patient’s neck that record the

acoustic sounds that occur during swallowing [11]. Clinically it is implemented with an ordi-

nary stethoscope. Previous contributions have shown that sounds of normal and abnormal

swallows are different [12], though identification of specific impairments, or characterization

of the nature of the abnormal swallows has yet to be identified using CA. However if the

value of CA can be raised by improving its ability to detect specific and clinically important

biomechanical errors or bolus misdirection, it would become more useful in screening and

possibly diagnosis. Because of its low cost, noninvasiveness and accessibility, an objective,

valid and reliable method for clinically using CA would be attractive [13, 14]. Current CA

implementation methods utilize a subjective perceptual assessment by the test administra-

tor to make a judgment regarding the clinical relevance of the sounds that occur during the

swallowing event, and several prior studies have found such judgment methods to produce

relatively low overall accuracy in identifying specific biomechanical and bolus-flow abnormal-

ities [15]. However, developing algorithms for instrumented analysis may prove to produce

a more objective characterization of swallowing events from acoustic data than perceptual

judgment, and significantly increase the sensitivity and specificity of the examination.

A number of studies have investigated swallowing sounds (e.g., [16, 17, 11]). However,

none of the studies have investigated the baseline characteristics of cervical auscultation

signals (i.e., when swallows are not present). Understanding such characteristics is impor-

tant for several reasons. First, cervical auscultation signals can potentially contain signal

components that are present even when no swallowing is performed, such was the case for

swallowing accelerometry signals [18]. Second it is possible that, like for accelerometry sig-

nals, the baseline characteristics of swallowing sounds could be affected by the patient’s
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movement or head position. For example, Sejdić et al. [19] showed that head motions can

severely impact swallowing accelerometry components, and later developed an algorithm for

removing those components [20]. Similarly, microphones can sometimes record sounds as-

sociated with skin displacement (e.g., [21, 22]). Therefore, the same procedure should be

investigated for swallowing sounds to reduce the effect of acoustic artifact on CA signals that

may mask data that reflect physiologic events. Also relationships between the different head

positions or compensatory postures used during swallowing, age, gender and other diagnos-

tic differences among patients, may affect the resultant acoustic sounds of the swallowing

event; if these could be accounted for and subtracted from the overall CA product signal,

the resultant signal would have more value as diagnostic data.

To address these open questions, we examined baseline characteristics of cervical auscul-

tation signals in time domain, frequency domain and time-frequency domains. In particular,

these signals were examined while participants completed several tasks in head neutral po-

sition and the chin-tuck (head/neck flexion) positions which is a common compensatory

posture used with some dysphagic patients to mitigate specific aspects of dysphagias. Sex

and age dependence were also examined.

2. Methodology

2.1. Data Acquisition from Participants

56 people, aged from 18 to 65, with no previous self-reported history of neurological

diseases, swallowing disorder, head, neck or spinal trauma, neck, brain or mouth cancer or

abnormal brain activity, participated in the data acquisition process. Each subject provided

written consent and provided basic demographic information such as their age. The study

was approved by Institutional Review Board at the University of Pittsburgh.

We recorded sounds with a contact microphone (AKG C411L, AKG Acoustics GmbH,

Vienna, Austria) that had a frequency response from 10Hz to 18kHz. We also recorded

accelerometry signals using a dual-axis accelerometer (ADXL322, Analog Devices, Norwood,

MA, USA). However, swallowing accelerometry signals were not considered in the current
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manuscript. All signals were recorded using LabView software Signal Express (National

Instruments, Austin, TX, USA) which provided 40kHz sampling rate, and recorded data

was saved to a hard drive.

Figure 1: Position of accelerometer and microphone

The sensors were attached to the subject’s anterior neck with double sided tape. The

accelerometer was positioned below the thyroid cartilage as shown in Figure 1 and the

microphone was positioned far enough from the accelerometer such that the two sensors

would not come into contact. After the placement of sensors, the subject was asked to

complete six different tasks. First the resting state was recorded, where the subject was

asked to refrain from moving, talking, or swallowing for one minute. Next, the subject

was instructed to hold their head in the head neutral position and hold their breath for 10

seconds while again refraining from moving, talking, or swallowing. The next four tasks each

consisted of subjects tilting their heads then returning to the neutral starting position ten

times in one of four directions: in the sagital plane (flexion, extension), and in the coronal

plane (right and left lateral flexion) (Figure 2). During these tasks, the subjects were asked
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again to refrain from talking or swallowing.

Figure 2: Different head motion: a) flexion and extension, b) right and left lateral flexion

2.2. Pre-processing

The raw signals were pre-processed by the algorithm reported in previous studies (e.g.,

[18]). In order to annul effects from the recording devices, a finite impulse response filter, was

created using AR coefficients from 18 baseline recordings, a method described in [18]. After

filtering, the signals were denoised with 10-level discrete wavelet decomposition using the

discrete Meyer wavelet with soft-thresholding. The global denoising threshold as proposed

in [23] was used for wavelet denoising.

As the frequency response of the microphone which was used in experiment is from

10 Hz to 18 kHz, the pre-processed signals were filtered with a 4 order, infinite impulse

response Butterworth high pass filter with cut off frequency of 10Hz to eliminate any spurious

frequency components that may present as a side effect of pre-processing steps.

The subsequent feature extraction was performed on the pre-processed signals.

2.3. Feature Extraction

Considered here are the time domain, frequency domain and time-frequency domain

features. Under the assumption, that each microphone signal is represented as an array of

time elements, of length n, M = {m1,m2, ...,mn}, each subsections below are describes the
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computation of each feature. The same formulas are used for features extraction for both

axis of the accelerometer signal.

2.3.1. Time Domain Features

• Standard deviation describes spread of amplitude probability distribution of signal,

and it is computed by

s =

√√√√ 1

n− 1

n∑
i=1

(mi − µm), (1)

where µm is mean value of the signal amplitude.

• Skewness describes symmetry of the probability distribution curve [24], and it is cal-

culated by:

ν =
1
n

∑n
i=1 (mi − µm)

3

( 1
n

∑n
i=1 (mi − µm)2)1.5

. (2)

• The kurtosis describe the ”peakedness” of the probability distribution curve. A high

value means that curve is sharp and narrow, while a low value describes a flat distri-

bution peak. It is computed by:

ϖ =
1
n

∑n
i=1 (mi − µm)

3

( 1
n

∑n
i=1 (mi − µm)2)2

. (3)

• The entropy rate [25, 26] describes regularity of the signal. To calculate entropy rate,

first the signal M should first be normalized to zero mean and unit variance. The

normalized signal is than quantized to 10 equally spaced levels ranging from minimum

to maximum, M̂ = {m̂1, m̂2, ..., m̂n}. In the next step, the signal M̂ is coded with U

consecutive points

si = m̂i+U−1 · 10U−1 + ...+ m̂i · 100, (4)
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where i = 1, 2, ..., n−U +1, and Si = {s1, s2, sn−U+1} are coded integers. The entropy

is estimated using the Shannon entropy formula by

E(U) = −
10U−1∑
k=1

PSu(k) · lnPSU
(k), (5)

where PSu is probability of observing k in Su. The entropy E(U) is normalized with

N̂E(U) =
E(U)− E(U − 1) + E(1) · α

E(1)
, (6)

where α is the percentage of the coded integers in Si that occur only once. Finally,

the entropy rate or regularity index is calculated by:

ρ = 1−minN̂E(U). (7)

• The Lempel-Ziv complexity (L-Z) [27] describes predictability of the signal. To cal-

culate L-Z complexity, first signal M is quantized to 100 equally spaced levels ranged

from minimum to maximum, An
1 = {a1, a2, ..., an}. In the next step, the signal An

1 is

decomposed into L different blocks, which are defined as Ψ = {aj, aj+1, ..., al}. The

length of the blocks are l − j + 1. Now the signal can be represented by:

An
1 = {ψ1, ψ2, ..., ψn} (8)

The first block is equal to first symbol, Ψ1 = a1, while others are computed by

Ψm+1 = A
hm+1

hm+1,m ≥ 1,m ∈ Z+ (9)

where hm is ending index for ψm. At the end, the formula for calculating the L-Z

complexity is given by:

LZ =
L log100 n

n
(10)

8



2.3.2. Frequency Domain Features

• The peak frequency is the frequency which contains most of the energy of the signal,

defined as

fp = argmax
f∈[0,fmax]

|FM(f)|2, (11)

where fmax is the highest available frequency in a signal and FM is the Fourier transform

of the signal.

• The centroid frequency is the frequency at which the center of mass of the signal lies

[18] and is computed by

fc =

fmax∫
0

f |FM(f)|2df

fmax∫
0

|FM(f)|2df
. (12)

• Bandwidth represents spectral spread and it is defined as

BW =

√√√√√√√√
fmax∫
0

(f − fc)
2 |FM(f)|2df

fmax∫
0

|FM(f)|2df
. (13)

2.3.3. Time-Frequency Domain Features

• The relative energy describes the concentration of the signal’s energy at various fre-

quency levels. It is computed using a 10-level discrete wavelet decomposition of the

signal with the Meyer wavelet [24, 28, 29, 30, 31, 32]. The signal decomposition is

written as WM = {a10, d10, d9, ..., d1}, where a10 is approximation signal and and di is

detail signal.

The energy at each decomposition level is computed as

Ea10 = ||a10||2, (14)
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Edi = ||di||2, (15)

where || • || is the Euclidean norm of decomposition coefficient vectors.

ET = Ea10 +
10∑
i=1

Edi (16)

is the total energy of the signal, and the percent of relative energy contribution from

each decomposition level is

Eta10
=
Ea10

ET

× 100%, (17)

Etdi
=
Edi

ET

× 100%. (18)

• The wavelet entropy describes the spread of relative energy and it is computed as

WE = −
Eta10

100
· log2Eta10

−
10∑
i=1

Etdi

100
· log2Etdi

(19)

where Eta10
and Etdi

are relative energy calculated above from each wavelet decompo-

sition level.

2.4. Data Analysis

The statistical differences between all different conditions were tested using the Kruskal-

Wallis test [33]. Next, the Wilcoxon rank-sum test [34] was used for determining pairwise

statistical differences between similar head motions. Namely, we examined the statistical

differences between the 1 minute baseline and 10 seconds breath holding segments, between

the positive and negative sagittal head tilts, and between the positive and negative coronal

head tilts. Due to the clinical significance of the chin-tuck position, statistical differences

between the 1 minute baseline and the positive sagittal position was examined as well. The

Wilcoxon rank-sum test was also to examine sex effects. To examine the age effects on

features, we employed a standard linear regression [35].
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3. Results

In this section, we summarize the obtained results. As a starting point, we provide

graphical representations of sample signals obtained in our experiment.

Figure 3: Example of the 1 minute baseline task (the upper signal) and tilt forward task (the lower signal)

Tables 1 and 2 summarize mean values of the different features, expressed as mean

± standard deviation. We first examined the effects of different tasks on all considered

features. The Kruskal-Wallis test showed that only skewness (ν), peak frequency (fp) and
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d1 relative energy level did not exhibit significant statistical differences between different

tasks (p > 0.05).

Table 1: Time domain features for cervical auscultation signals. ∗ denotes multiplication by 10−2, ∗∗ denotes

multiplication by 102.

Feature 1 minute

baseline

10 sec hold

breath

tilt forward tilt backward tilt right tilt left

s∗ 0.04± 0.01 0.04± 0.01 0.19± 0.04 0.14± 0.05 0.11± 0.02 0.12± 0.04

ν −0.53±0.22 −0.98±0.93 −1.21± 2.42 −0.79± 0.75 0.13± 0.09 1.04± 0.71

ϖ∗∗ 50.4± 29.1 7.91± 4.52 26.2± 8.95 16.3± 7.74 15.1± 5.75 6.51± 2.81

ρ 0.99± 0.01 0.99± 0.01 0.99± 0.01 0.99± 0.01 0.99± 0.01 0.99± 0.01

LZ∗ 0.81± 0.08 1.86± 0.12 0.66± 0.08 0.96± 0.11 1.14± 0.09 1.14± 0.09

Pairwise comparisons between right and left lateral flexion did not reveal significant differ-

ences for any of the features (p > 0.05). Pairwise comparison between flexion and extension

did not show statistical differences for standard deviation (σ), skewness, and entropy rate

(ρ), as well as for all of the frequency domain features (p > 0.05). Flexion experienced a

higher mean value for kurtosis (ϖ) (p = 0.02) and a lower mean value for the Lempel-Ziv

complexity (p = 0.04) than the extension. While performing pairwise comparisons for the

time-frequency domain features, we observed that the wavelet entropy (WE) and most of

the relative energy levels were not affected by head motion (p > 0.05). The relative energy

distribution was only statistically different between flexion and extension for the levels d4

and d3 (p < 0.05).

Table 2: Frequency domain features for cervical auscultation signals.

Feature 1 minute

baseline

10 sec hold

breath

tilt forward tilt backward tilt right tilt left

fp 14.8± 0.79 16.5± 0.97 20.6± 3.96 15.2± 1.44 16.7± 3.03 16.8± 3.71

fc 131± 40.8 84.2± 27.3 434± 80.1 287± 56.9 325± 87.4 218± 83.3

BW 556± 151 239± 69.7 963± 154 782± 127 325± 158 499± 116

The pairwise comparison between 1 minute baseline and 10 seconds breath holding were

not statistically different the standard deviation, skewness and entropy rate (p > 0.05).
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The 1 minute baseline showed higher mean value for kurtosis (p << 0.01) and lower mean

value for L-Z complexity (p << 0.01) than the breath holding segments. The observation

of frequency domain features for the same pairwise comparison shows that peak frequency

was not statistically different between the 1 minute baseline and breath holding segments.

However, the 1 minute baseline segment had higher mean value of centroid frequency (fc)

and bandwidth (BW ) than the 10 seconds breath holding segments.

Figure 4 present results for the mean relative energy per the composition band. Wavelet

entropy showed mean value of 0.93± 0.06 for 1 minute baseline, 0.97± 0.06 for 10 sec hold

breath, 1.85±0.11 for tilt forward, 1.67±0.09 for tilt backward, 1.44±0.09 for tilt right and

1.25 ± 0.09 for tilt left. The wavelet entropy and the relative energy in levels a10, d3 and

d2, were not statistically affected (p > 0.05). Significant differences were found between the

1 minute baseline and 10 seconds breath holding segments for relative energy in the levels

d10, d9, d8, d7, d6, d5, d4 and d1.

Figure 4: Mean relative energy per decomposition band.

Pairwise comparison between 1 minute baseline and head flexion did not show statistical

difference for skewness, L-Z complexity, entropy rate, peak frequency and d1 relative energy

level (p > 0.05), while all other feature show significant difference (p << 0.01).

Sex differences were not present for most of the features except for the skewness during

the 1 minute baseline (p = 0.02) and kurtosis during left lateral flexion (p = 0.02).
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According to the results of linear regression, frequency and time frequency domain fea-

tures do not depend on the subject’s age for all of the head motions (p > 0.05). There was an

observed age dependence of skewness and kurtosis for 10 seconds breath holding, extension,

right and left lateral flexion (p < 0.02) tasks. Standard deviation was affected with age for

extension, right and left lateral flexion, while L-Z complexity were affected for extension and

right lateral flexion (p < 0.02).

4. Discussion

In this paper, we extracted a number of features in different acoustic signal domains

during various head maneuvers. Understanding relationships between these maneuvers and

associated features will help us to further understand swallowing sounds and the mechanism

that generates these sounds. Since head movements could be present during swallowing,

these presented findings are important for future investigations of swallowing sounds.

4.1. The Effects of Head Maneuvers on Cervical Auscultation Signals

A lower mean value for the Lempel-Ziv complexity implies higher predictability. In this

case, as we completed a pairwise comparison between flexion and extension, a lower values

denotes that flexion produces a more predictable signal than tilting in the extension. Also,

kurtosis describes “peakness” of the amplitude probability distribution of the signal. A

higher mean value of the kurtosis for the flexion task than for the extension task means that

extension contains more variant amplitudes in the sound signal. However, the behavior of

the sensors on the skin during motion needs to be considered. During extension, the sensor

moves with the skin over the laryngeal framework and produces a sound. This behavior

likely explains higher kurtosis and higher predictability of flexion compared to extension.

A lower kurtosis value for breath holding segments than for the 1 minute baseline task

implies that the 1 minute baseline task contains less components of the different amplitudes

(loudness) than that the baseline task. The microphone attached on the subject’s neck can

also record sounds from the carotid artery [36]. Studies have shown that the heart rate

increases and becomes more prominent while holding breath in comparison to the resting

14



state [37]. These heart rate changes can potentially provide more signal components, which

can explain the results for kurtosis, as well as the lower result of L-Z complexity for 1 minute

baseline to the 10 seconds holding breath task. A lower mean value of the Lempel-Ziv

complexity for the 1 minute baseline implies that task tends to be a more well defined pattern

than the 10 seconds breath holding task, which is expected since the cervical auscultation

signal for the 10 seconds breath holding task can change with time as the heart rate increases.

A higher value for the centroid frequency during the 1 minute baseline than during the 10

second breath holding tasks can be attributed to higher bandwidth values during the 1 minute

baseline task. Given the effects of the heart rate on swallowing sounds, future studies should

investigate if these effects can be annulled via filtering operations.

The comparison between the 1 minute baseline and flexion is a clinally important ques-

tion. A similar study has been done with the accelerometer signal [38], which showed that

the flexion contain low frequency components which contaminate the signal information.

The significant influence of head motion can be observed even by visual inspection of the

accelerometer signals in time domain for this two tasks, and an algorithm was developed

that removes low frequency components produced by head motions from the swallowing ac-

celerometry signals [20]. In the case of swallowing sounds, statistical differences for most

of the features between the 1 minute baseline and the flexion task are expected due to the

clearly different behaviors. Of particular interest for this pairwise comparison is the peak

frequency, which denotes the frequency component with the greatest energy. Statistically

different peak frequency values would mean that the flexion contains dominant frequency

components different from the dominant frequency component during the baseline signals,

resulting in motion-based artifacts found in accelerometer signals. The presented result did

not show statistical difference for the peak frequency for these two tasks. Visual inspection

of the swallowing sounds also did not find any significant differences (Figure 3). Hence, we

can conclude that there is no need for removing signal components associated with head

movements.

We anticipate that the observed age effects are due to the behavior of the skin in older
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subjects. With the age, skin loses the collagen and elastin which are supportive connectivity

for the tissue of the skin. These changes causes wrinkling, laxity and sagging of the skin

[39]. The attached sensor on the subject’s neck should record sounds next to cricoid cartilage

through the skin. Due to the sagging skin on the neck, it is possible that the microphone does

not directly sit at top of the laryngeal framework in various head position. Consequently,

some information is lost or artifacts are introduced (for example, a sound produced by

touching the skin with cricoid cartilage when the head moves backward).

Males had significantly higher mean values for skewness during the 1 minute baseline

task and for kurtosis during the tilting left task. We anticipate that these sex differences are

not of any importance, as there is no theoretical reasons for these features to differ between

genders during our passive recording tasks (e.g., [40] and references within).

4.2. Remarks

In the same way that background noise influences the acoustic signal perceived by humans

in a sound field, head movement can introduce extraneous artifact into recorded swallowing

acoustic data. This problem also exists with imaging studies such as videofluoroscopy, and

with nonimaging myoelectric signals such as those recorded with surface electromyography.

The primary goal of this study was to investigate potential acoustic artifacts produced only

by common head movements performed by dysphagic patients using compensatory maneu-

vers while swallowing. The current manuscript does not make any inferences about muscle

activity or other biomechanical events associated with swallowing or with head movements

as our study were not geared towards such activities. In future studies we hope to be able

to subtract this artifact from the total acoustic signal to derive more specific information

regarding physiologic events occurring during swallowing.

5. Conclusion

In this paper, the baseline characteristic of non-swallowing cervical auscultation signals

and the effects of head movements on their characteristics were analyzed. Signals were col-

lected from 56 participants and 10 different features were considered. Statistical differences
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between clinically relevant head movements were examined. Any age and gender affects on

a signal were also observed and discussed. We found that head tilting forward (flexion) and

tilting backward (extension) influences some features, but these head movements do not af-

fect the peak frequency and so it is not necessary to remove them from the signal. However,

the study also showed that certain features exhibited age dependence. These findings may

indicate that sex, head position and possibly other variables may influence swallowing acous-

tics. Further exploration of these findings may generate methods that increase the diagnostic

value of CA. For CA to be eventually make its way into clinical usefulness as a valid and

reliable screening or diagnostic method for dysphagia, abnormalities in swallow physiology

need to be very reliably attached to specific acoustic signals that can be discerned either

perceptually or with instrumentation.
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